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a b s t r a c t

Citrus greening, also called Huanglongbing (HLB), became a devastating disease spread through citrus
groves in Florida, since it was first found in 2005. Multispectral (MS) and hyperspectral (HS) airborne
images of citrus groves in Florida were acquired to detect citrus greening infected trees in 2007 and
2010. Ground truthing including field and indoor spectral measurement, infection status along with
GPS coordinates was conducted for both healthy and infected trees. Ground spectral measurements
showed that healthy canopy had higher reflectance in the visible range, and lower reflectance in the
near-infrared (NIR) range than HLB infected canopy. Red edge position (REP) also showed notable differ-
ence between healthy and HLB canopy. But the difference in the NIR range and REP were comparably
more sensitive to the environment or the background noise. Accuracy for separating HLB and healthy
samples reached more than 90% when a simple REP threshold method was implemented in the ground
reflectance datasets, regardless of field or indoor measurement; but it did not work well with the HS
images because of its low spatial resolution. Support vector machine (SVM) was able to provide a fast,
easy and adoptable way to build a mask for tree canopy. High positioning error of the ground truth in
the 2007 HS image led to validation accuracy of less than 50% for most of classification methods. In
the 2010 image from Southern Gardens (SG) grove, with better ground truth records, higher classification
accuracies (about 90% in training sets, more than 60% in validation sets for most of the methods) were
achieved. Disease density maps were also generated from the classification results of each method; most
of them were able to identify the severely infected areas. Simpler classification methods such as mini-
mum distance (MinDist) and Mahalanobis distance (MahaDist) showed more stable and balanced detec-
tion accuracy between the training and validation sets in the 2010 images. Their similar infection trend
with ground scouted maps showed a promising future to manage HLB disease with airborne spectral
imaging.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Citrus Industry and HLB

As a major fruit crop in Florida, citrus produced about $1.47 bil-
lion in 2009–2010, compared to $2.88 billion throughout the US,
according to the citrus statistics by National Agricultural Statistics
Services (USDA, 2010). The whole citrus industry has about $9 bil-
lion economic impact in Florida where nearly 569,000 acres of cit-
rus groves exist.

However, this citrus industry is now greatly threatened by the
citrus greening disease (also known as Huanglongbing or HLB in

short). By February 2010, more than 3000 sections (one section is
one square mile) were found infected by this disease in 34 counties
as shown in Fig. 1a (DPI, 2010). HLB infected trees have the initial
appearance of asymmetric yellow patches on some of its leaves
(Fig. 1b). As the bacteria spread within the tree, the entire canopy
progressively turns yellowish which may superficially resemble
zinc deficiency. Fruit from severely infected trees are small, bitter,
and often irregular in shape, which will totally destroy their eco-
nomic value. The vector Diaphorina citri Kuwayama which origi-
nated from Asia was discovered in June 1998 in Florida (Halbert
and Manjunath, 2004), and the disease itself was first found in
August 2005 in south Miami-Dade County, Florida (Manjunath
et al., 2008).

The definitive diagnosis methods are mainly based on genetic
methodology such as polymerase chain reaction (PCR) (Jagoueix
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et al., 1996). No effective and environmentally sound cure method
has been found yet. The only preventative measure implemented
till now to slow down or reduce further infection is to remove
the infected trees.

1.2. Citrus greening detection technologies

Although PCR test is so far the most accurate method to confirm
HLB, samples should be first collected by trained workers, and then
tested individually in a laboratory. The sampling and analysis pro-
cess turns out to be highly labor intensive and time consuming,
especially considering the wide grove area and the large number
of trees. So it is urgently required to find some other ways to
quickly and accurately detect the infected trees.

Spectral reflectance (commonly measured in the visible and
near-infrared (NIR) spectral range) differs when the chemical com-
ponents in the surface or subsurface of crop canopy change. This
causality provided researchers a nondestructive way to sense the
change happening inside the object. In agriculture, many studies
related to spectral features have been conducted to predict crop
leaf chlorophyll content, nitrogen content, canopy diseases, etc.
Pydipati (2004) and Qin et al. (2009) used color camera and hyper-
spectral imaging system to differentiate some common symptom-
atic citrus diseases by taking pictures of citrus’ leaves and fruit
under laboratory environment. Since one of the most obvious
symptoms of HLB is the change of canopy color to lighter green
and yellow, this imaging method could also be applied to detect
HLB disease. Gonzalez-Mora et al. (2010) set up a ground based
prototype of hyperspectral sensing system which was designed
to identify HLB infected trees, but the experimental result was
much affected by unrealistic illumination condition and unfavor-
able timing. Fourier transform infrared–attenuated total reflection
(FT-IR–ATR) spectroscopy was used by Hawkins et al. (2010) to test
the HLB disease in its earlier pre-symptomatic stages. As a substi-
tute method of a PCR test, it took only minutes rather than hours to
test a sample, and had a very high accuracy of 95%. However, for
this method, leaf samples needed to be collected, dried, and ground
before analyzed.

Although the methods based on machine vision and spectrora-
diometer mentioned above had a promising accuracy to distinguish

the diseased fruit or trees from healthy ones, it is still time
consuming when applied to a large citrus grove due to their ground
based detection. Another extreme choice is satellite imagery which
has a large field of view and has also been widely used in agricul-
tural applications, such as vineyard leaf area estimation (Johnson
et al., 2003), sugarcane harvest detection (Hajj et al., 2009), etc.
But it is difficult to conduct tree-based disease detection due to
its coarse spatial resolution. This problem can be solved by adopt-
ing airborne imaging which has a good balance of area coverage
and image resolution compared to either ground measurement
or satellite imagery.

Many studies on hyperspectral (HS) and multispectral (MS) im-
age processing have been conducted in recent years, since satellite
and aircraft remote images are becoming easier to acquire. Noise
reduction is one of the most important preprocessing steps, espe-
cially for HS image which has large amount of correlated redun-
dancy among its hundreds of different wavelength bands.
Approaches such as principle component analysis (PCA), minimum
noise fraction (MNF), artificial neural network (ANN), etc. could be
used for noise reduction or bands selection (Bajwa et al., 2004;
Boardman and Kruse, 1994; Green et al., 1988).

Kumar et al. (2010) investigated several endmember detection
algorithms to distinguish HLB infected citrus trees from healthy
ones based on MS and HS images, but more sufficient and convinc-
ing ground spectral analysis is needed, and the classification accu-
racy needs to be further improved. Huang et al. (2007) derived
photochemical reflectance index (PRI) from both in-situ spectral
reflectance measurement and airborne HS image to evaluate the
yellow rust infection status in wheat, and the coefficients of deter-
mination between PRI and infection severity reached to 0.97 and
0.91 using in-situ spectral reflectance and airborne HS image,
respectively.

Artificial neural network and support vector machines (SVMs)
are also used in image pixel classification. In order to find out
which method is more suitable for land use classification, Candade
and Dixon (2004) compared the application result with remote-
sensing image classification by using these pattern recognition
techniques.

In a study conducted by Plaza et al. (2009), good classification
performance was demonstrated by SVMs using spectral signatures

Fig. 1. HLB infected sections and disease symptom: (a) HLB infected sections (marked in red) in Florida (DPI, 2010), and (b) HLB symptom on leaves and fruit. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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as input features, and was further improved by taking advantage of
semi-supervised learning and contextual information. Several clas-
sification algorithms for pattern recognition had also been tested in
the mapping of tropical forest cover using airborne HS data in a re-
search conducted by Shafri et al. (2007). Results of maximum like-
lihood, spectral angle mapping (SAM), artificial neural network
(ANN), and decision tree classifiers were compared and evaluated.

Vegetation indices are also widely used for crop status evalua-
tion or classification. Shafri and Hamdan (2009) used vegetation
indices and red edge techniques derived from airborne hyperspec-
tral image to detect ganoderma basal stem rot disease in oil palm
plantations, and reported that red edge based techniques reached
the highest accuracy of more than 80%. Qin and Zhang (2005) used
ratio indices and stand difference indices from the four-band mul-
tispectral airborne image to detect rice sheath blight disease, and
reached a highest correlation coefficient of 0.68 with field disease
index. Tian et al. (2011) improved a technique to calculate red edge
position (REP) for leaf nitrogen concentration (LNC) prediction in
rice, and compared the accuracy with other techniques such as lin-
ear extrapolation, Lagrangian technique, etc. by applying to a
Hyperion image, and reached higher coefficient of determination
with leaf area index and leaf nitrogen concentration than other
techniques.

Although so many studies about remote sensing technologies
have been conducted, its application on HLB detection in citrus
groves was just started. In this study, advantages of both ground
and airborne remote sensing were utilized to find the spectral dif-
ferences between HLB and healthy citrus canopies. Several classifi-
cation and spectral mapping methods were later implemented in
airborne MS and HS images. Their performances and adaptability
to detect HLB infected canopy in citrus groves were then compared
and evaluated.

2. Materials and methods

2.1. Image acquisition in 2007 and 2010

Airborne MS and HS images were acquired in 2007 and 2010, at
a commercial citrus grove named Southern Garden (SG) in Hendry
County, FL, and a research grove in the Citrus Research and Educa-
tion Center (CREC, affiliated to the University of Florida), Lake
Alfred, FL.

The 2007 HS image was taken at northern part of the SG grove
on November 3rd. The region of interest (ROI) spread across more
than 730 ha. The center coordinates were 26.385523�N,
80.956000�W. Two orange varieties, Valencia and Hamlin, were
grown in this area. An AISA Eagle sensor was configured to collect
the HS data with 128 bands (ranging from 397 to 995 nm with an
interval of 4.7 nm). The raw data were radiometrically calibrated to
radiance and then atmospherically corrected to reflectance by the
FLAASH module in ENVI software (version 4.6, ITT VSI, White
Plains, NY, USA). The final reflectance percentage values were mul-
tiplied a factor of 100. The calibrated data were then georeferenced
using corresponding GPS and inertial measurement unit (IMU)
information. The final mosaic image which was presented in
UTM N17 projection with the datum of WGS-84 had a spatial res-
olution of 0.7 m, and the estimated accuracy was approximately 1–
2 pixels.

On December 3rd in 2010, MS and HS images were taken upon
both the SG and CREC groves. Two orange blocks (with a variety of
Valencia) at the southwest corner (center coordinates of
26.318096�N and 80.957778�W) was chosen as a study area in
the SG grove; and one block (center coordinates of 28.104920�N
and 81.714020�W) was chosen in the CREC grove. Two prototype
MS and HS imaging systems (shown in Fig. 2a) developed by Yang

(a) (b)

(c)
(d)

Fig. 2. 2010 experiment site and equipment: (a) HS and MS imaging systems (Yang, 2010), (b) citrus grove with calibration tarps of different gray levels indicated, (c) HR-
1024 handheld spectrometer along with a white panel, and (d) indoor platform for spectral measurement.
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et al. (2003) and Yang (2010) were used in this experiment. The MS
system consisted of four high resolution CCD cameras with four
band-pass filters at the wavebands of blue (430–470 nm), green
(530–570 nm), red (630–670 nm), and NIR (810–850 nm). The HS
imaging system integrated a CCD camera and an imaging spectro-
graph which dispersed radiation into 128 bands in the range of
457.2–921.7 nm (with an interval of 3.6 nm), and scanned in the
along-track direction. Alignment for the MS images and geometric
correction for the HS images were conducted. For atmospheric cal-
ibration, five 3 m � 3 m tarps with different gray levels (3%, 10%,
30%, 45%, and 60%) were placed at an open area next to the citrus
blocks while taking images, as shown in Fig. 2b. Their ground
reflectance was also measured in both groves with a handheld
spectrometer (HR-1024, Spectra Vista Corporation, Poughkeepsie,
NY, USA, more detailed information found in Section 2.2)
(Fig. 2c). By matching the ground reflectance of those tarps with
their ROIs from images, empirical line was developed to radiomet-
rically calibrate the raw digital number (DN) to reflectance. With
corner coordinates collected with an RTK GPS equipment (HiPer
XT, Topcon, Livermore, CA, USA), all the MS and HS images were
georeferenced to UTM N17 projection with the datum of WGS-
84. The MS images were resampled with 0.5 m resolution, and
the HS images were resampled with 1 m resolution. Basic informa-
tion of these five images is listed in Table 1.

2.2. Ground truth measurement

In the 2007 experiment, the whole ROI was scouted by the
grove workers to check the infection status of each tree; however
no PCR tests were performed to confirm the HLB infection. A total
of 7972 HLB infected trees along with their GPS coordinates were
recorded, however the positioning error was about 1–3 m. No
ground spectral reflectance was measured. The 2007 experiment
was only used as a counterexample to prove the importance
of the ground truthing. In the 2010 experiment, four classes of

infection status were established based on symptom visibility
and PCR results at the SG grove; another five classes only based
on tree infection severity were established at the CREC grove.
Table 2 lists the detailed information for all the classes.

Three types of ground truthing were investigated:

(a) Field and indoor spectral reflectance measurement for all the
classes.

(b) PCR tests to confirm HLB infected status of leaf samples.
(c) Coordinates recording for all the measured trees by using an

RTK GPS receiver (HiPer XT, Topcon, Livermore, CA, USA)
with a static horizontal accuracy of 3 mm.

Both field and indoor reflectance at the SG grove were measured
by the handheld spectrometer which was also used in the tarp
measurement. It has a spectral range of 348–2505 nm with an
interval of 3 nm. A white reference panel made from polytetrafluo-
roethylene (PTFE) material was used for calibration. The field mea-
surement took advantage of solar radiation, and the indoor
measurement adopted an artificial light source.

The field measurement at the CREC grove was also carried out
with the same handheld spectrometer, but indoor measurement
for leaf samples, as well as branch and fruit samples was conducted
with another UV–VIS–NIR spectrophotometer (Cary 500 Scan, Var-
ian, Palo Alto, CA, USA), which had better spectral resolution and an
integrating sphere for reflectance measurement. The spectral range
was 200–2500 nm with a 1 nm interval.

2.3. Spectral feature analysis

Spectral features derived from original reflectance, such as
absorption and reflectance characteristics, first derivative (1D),
red edge position, etc. from both ground measurement and air-
borne images were analyzed and discussed.

2.3.1. Spectral feature analysis from ground measurement
Mean spectra and 1D of every canopy class from the 2010 in-

door measurements in the CREC grove were calculated and are
shown in Fig. 3. In the main plots, the dashed and dotted lines rep-
resent classes with different HLB infection severity. The green and
red solid lines represent the mean spectra for all the healthy and
HLB infected samples, respectively. Those numbers in the paren-
theses are the sample numbers for each class. The upper right sub-
plot shows the 1D signature which was pre-processed with 11-step
moving average for each class.

The indoor spectra shown in Fig. 3 were all about leaf samples
instead of canopy. The spectrophotometer used in the indoor
experiment had its own light source, and every leaf sample was
placed in an enclosed chamber, thus the result was very precise
and reliable. In Fig. 3, samples with different infection severity

Table 1
Basic information for images used to detect HLB diseased canopy.

Images Spectral bands Spatial
resolution (m)

2007 SG_HS 128-band HS image from 397 to 995 nm
(4.7 nm interval)

0.7

2010 SG_HS 128-band HS image from 457.2 to
921.7 nm (3.6 nm interval), acquired at
the Southern Gardens grove and CREC,
respectively

1.0
2010 CREC_HS

2010 SG_MS 4-band MS image (at 450, 550, 650, and
830 nm), acquired at the Southern
Gardens grove and CREC, respectively

0.5
2010 CREC_MS

Table 2
Brief description of four classes of leaf samples: only the class marked with ‘⁄’ was used to build a healthy library, and the class marked with ‘⁄⁄’ was used to build a HLB library.
The other classes were not used in any library development. In the SG grove, ‘‘HEA’’ stands for ‘‘healthy’’, ‘‘S’’ stands for ‘‘symptom’’, ‘‘NS’’ stands for ‘‘non-symptom’’, ‘‘P’’ stands for
‘‘positive’’, and ‘‘N’’ stands for ‘‘negative’’.

Imaging location Classes Tree infection status Infection status of sampled leaves

SG grove HEA_PCR_N� Healthy No HLB symptom, PCR tested negative
S_PCR_P�� HLB infected With HLB symptom, PCR tested positive
NS_PCR_N HLB infected No HLB symptom and PCR tested negative
NS_PCR_P HLB infected No HLB symptom but PCR tested positive

CREC grove HEALTHY Healthy No HLB symptom and PCR tested negative
HLB_L HLB infected Low HLB infection, PCR tested positive
HLB_M HLB infected Medium HLB infection, PCR tested positive
HLB_H HLB infected High HLB infection, PCR tested positive
HLB_S HLB infected Severe HLB infection, PCR tested positive
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mainly show different levels of reflectance. Roughly, the more se-
vere the infection was, the higher reflectance the sample had in
the visible range (400–700 nm). But in the NIR range (700–
2500 nm), most of the infected samples had lower reflectance than
healthy ones, except HLB_M.

The difference in the visible range was commonly found in
other research; it was mainly caused by the decrease of chloro-
phylls with the presence of the HLB disease. It was also found that
the diseased leaves had certain damage or change on the inner cel-
lular structure which, in most of the cases, led to lower reflectance
in the NIR range (Knipling, 1970).

From the 1D plot, obvious difference between healthy and HLB
reflectance is presented. The infected leaves, regardless of their
severity difference, have similar peak positions in the red edge
spectral range (this peak is commonly defined as red edge position
or REP by Horler et al., 1983), which are far from that of the healthy

leaves. This characteristic provided a promising way to discrimi-
nate HLB from healthy samples.

The only exception is HLB_M which shows different relation-
ship with healthy samples in the NIR range. But since this class in-
cluded just one sample, the causality is difficult to analyze. It might
be attributed to other kind of inner structure change which was
caused by other disease or nutrient deficiency; or it might be con-
sidered as an evidence to show that the HLB disease could cause
variable changes to the inner structure, especially combining with
the field measurement results.

The field spectral measurement results at the CREC and SG
groves are shown in Figs. 4 and 5, respectively. A passive spectrom-
eter other than the active spectrophotometer was used in the field
measurement, and the reflectance spectra were calibrated with a
white panel. However, notable error could be introduced if the cal-
ibration frequency did not catch the radiation change, or the angle

Fig. 3. Mean spectra and first derivatives of 2010 indoor measurement of the samples obtained from the CREC grove.

Fig. 4. Mean spectra and first derivatives of 2010 field measurement at the CREC grove.
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between solar incident light and object surface varied a lot. One
more important difference from spectrophotometer measurement
was that even the spectrometer had a field of view (FOV) of only 4�,
the targeting area still contained other background information
and radiation scattered from nearby objects. In the CREC experi-
ment, calibration was conducted before every canopy measure-
ment, and the white panel was kept at the same direction as
targeted leaf surface. But in the SG experiment, calibration was
only conducted once in a while.

In the CREC field result, the relationships between HLB and
healthy canopies in the visible and REP range are almost consistent
with the CREC indoor result, but quite different in the NIR range. In
the SG field result, the REP difference was not as clear as in other
experiments, showing that this indicator was also sensitive to
background. The different relationship in the NIR range, on one
hand, supported the conclusion that HLB disease can cause variable
changes in the NIR range; on the other hand, it also implied that
the background had a qualitative influence on the reflectance in
the NIR range.

Since the samples were categorized by the symptom visibility
and PCR result in the SG experiment, the NS_PCR_P was considered
as being in the early stage of HLB disease because no visible symp-
tom had been developed yet. Then another interesting point could
be noticed in Fig. 5 that even though NS_PCR_P did not have any
visible symptom, it still showed similar spectral reflectance with
symptomatic samples (S_PCR_P), suggesting a possibility to detect
the disease at early stage.

2.3.2. Spectral feature analysis from MS and HS images
ENVI (version 4.8, ITT VSI, White Plains, NY, USA) was used for

the MS and HS image analysis. First, pixels for different classes and
land covers were collected to compare their spectral difference. In
the 2007 hyperspectral image, due to the notable ground truth
positioning error, only infected trees rather than specific infected
canopies could possibly be determined. In this case, four neighbor
pixels from the center of each infected tree were collected to build
an HLB infected library. Five other libraries for healthy tree canopy,
grass, sand (bare ground in white color), soil (bare ground in sienna
color), and shadow were also manually collected from this image.
Trees which were not marked in the ground truthing were consid-
ered as healthy ones, and were randomly picked to build a healthy

canopy library. Grass was found between rows and at the edge of
every block, and large area of shadow was formed at the east side
of every tree since the image was taken around 4 PM.

Mean spectra for those six libraries are plotted in Fig. 6. Num-
bers in the parentheses in the legend area indicate the number of
pixels used for the mean calculation. This plot shows that sand,
soil, shadow, and grass have obvious spectral difference than tree
canopies, but HLB infected and healthy canopies have much less
difference between them. The mean reflectance of HLB pixels is
slightly higher than that of healthy ones in both the visible and
NIR range. This trend is the same as the results of the 2010 CREC
field measurement.

In the 2010 images, more accurate ground truthing was imple-
mented. However, the hyperspectral image from the CREC grove
was severely distorted that it was not suitable for classification,
so only images from the SG grove were used for further analysis.
The HS image from the SG grove, though, which was acquired by
a pushbroom HS imaging prototype, still had an along-track distor-
tion due to the decreasing flight speed. As a result, the later part of
the original HS image had slightly higher spatial resolution than
the previous one. After being georeferenced with corner
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coordinates, the later part accumulated an offset of up to 6 pixels in
the opposite flight direction. After comparing with the MS images,
the ground truth vectors for the HS image were adjusted so that
the positioning error decreased to approximately 1–2 pixels. HLB
library was built from S_PCR_P class, and healthy library was built
from HEA_PCR_N class. Four adjacent pixels were collected at each
location in the MS image, but only 1 pixel was picked in the HS im-
age due to its lower spatial resolution. Several outliers were ex-
cluded from spectral libraries after exporting all the data to n-D
visualizer. The mean spectra from the HLB and healthy libraries
are shown in Fig. 7. HLB shows higher reflectance than healthy can-
opy from the visible range through the NIR range in both images,
consistent with that of the 2007 image.

2.3.3. REP analysis
As found earlier in this study from the first derivatives (1Ds) of

healthy and HLB spectra, difference of REP between those two clas-
ses was more distinguishable and less sensitive to the environment
than that of original reflectance. Thus, a further analysis utilizing
REP technology was conducted to evaluate its applicability for clas-
sification. The REP difference in the 2010 CREC ground measure-
ment was obviously noticed in Figs. 3 and 4, but hard to
distinguish in the 2010 SG field measurement, since it had several
peaks in that range. So this time, the dataset from the 2010 SG
ground measurement was used to quantize the difference at REP
range.

When the first derivative curve is continuous and with only one
peak near the red edge, REP can be easily determined by solving an
equation of the second derivative being equaled to zero, i.e., finding
the inflection point. But in the case of double or more peaks
appearing in 1D curve, like the one shown in 1D subplot in Fig. 5,
which commonly exists (Boochs et al., 1990; Cho and Skidmore,
2006; Smith et al., 2004), this method does not work properly. In
this study, two interpolation techniques termed three-point
Lagrangian interpolation (Dawson and Curran, 1998) and four-point
linear extrapolation (Cho and Skidmore, 2006) were used to calculate
REP from both the ground measurement and HS images.

In the 2010 SG ground experiments, 45 and 260 samples in total
were measured in field and indoor experiment, respectively. First
derivatives at 688.5, 706.5, and 736.5 nm were chosen for REP cal-
culation with three-point Lagrangian interpolation technique; first
derivatives at 688.5, 706.5, 736.5, and 751.5 nm were used in four-
point extrapolation method.

Box plots for the REP results of each class from both the field
and indoor measurements are shown in Fig. 8. Several basic statis-
tical measures of each set of data are interpreted in those box plots.

The red line inside every box indicates the mean value, the top and
bottom lines of the box represent the 75th and 25th percentile, and
two ends of whiskers show the minimum and maximum of every
dataset. All red crosshairs are considered as outliers since those
data have a distance with the nearer quartile of more than 1.5
times of the height of the box.

From those box plots, the dispersion degree of every dataset can
be easily interpreted. HEA_PCR_N has highest mean values while
S_PCR_P has the lowest, regardless the calculation method and
experimental environment. Due to the limited amount of samples
and the background introduced, each class from the field measure-
ment has larger variance than that from the indoor measurement.
In the indoor measurement result, the mean REPs calculated by
both methods shifts to shorter wavelength as leaf infection degree
becomes more severe. NS_PCR_N and NS_PCR_P samples have REPs
between HEA_PCR_N and S_PCR_P.

2.4. MS and HS image processing

Unlike image classification for different land covers or vegeta-
tion, this project of citrus disease detection is targeted on the same
vegetation, thus more accurate classification criteria are required.
Many supervised classification and spectral mapping methods in
ENVI were performed to evaluate their adaptability for citrus HLB
detection, such as parallelepiped, minimum distance (MinDist),
Mahalanobis distance (MahaDist), spectral angle mapping (SAM),
spectral information divergence (SID), mixture tuned matched fil-
tering (MTMF), and spectral feature fitting (SFF). Other methods
such as maximum likelihood (MaxLik), support vector machine
(SVM), and neural network (NN) were also tried, but did not work
well in this case.

2.4.1. HS image dimension reduction
Principle component (PC) and MNF are considered as the most

important data transformation methods to keep the most useful
information with the least number of bands or dimensions in the
HS images.

By exporting every pixel spectrum from those six classes pre-
sented in Fig. 6, the principle component analysis (PCA) was con-
ducted using MATLAB (version R2010b, MathWorks, Natick, MA,
USA) to extract the most information with a least number of bands.
Two and three-dimensional graphs (shown in Fig. 9) for different
classes are plotted in PC space. Shadow, sand, and soil can be easily
separated from vegetation classes even in 2D PC space (Fig. 9a),
grass is also separable from healthy and HLB canopies, especially
in 3D PC space (Fig. 9b). But large amount of HLB and healthy
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Fig. 7. Mean spectra for healthy and HLB libraries in the 2010 SG images: (a) MS image, and (b) HS image.
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pixels are mixed with each other, indicating a tough classification
task.

2.4.2. Background masking
In order to avoid influence from grass, shadow, and bare

ground, an image mask for tree canopy is necessary to block out
the noisy background. Several methods can be used to meet this
purpose. Vegetation indices (VIs) are commonly utilized for this
purpose by deciding a proper threshold between trees and back-
ground; however the reflectance in 2010 images were only cali-
brated with ground tarps by using an empirical line method,
which produced negative values at some pixels with low reflec-
tance (Smith and Milton, 1999; Staben et al., 2011), thus not suit-
able for VIs calculation. In this case, instead of VIs, SVM was chosen
and, in fact, proved to be a more effective alternative to build a
mask. SVM forms a decision surface (commonly called an optimal
hyperplane) which maximizes the margin between classes to

separate them. Data points closest to the hyperplane are called
support vectors which are the critical elements of the training set.

A 100 by 100 pixels HS image (Fig. 10a) with various types of
cover was chosen to implement SVM classification. Training ROIs
for five classes (tree, grass, shadow, sand, and soil) as defined in
Table 3 were collected from the original image. The classification
result is shown in Fig. 10b. Since every class in the original image
could also be differentiated based on human vision, another result
(shown in Fig. 10c) was manually discriminated as a reference to
evaluate the classification accuracy.

A confusion matrix was produced to quantify the classification
accuracy and is presented in Table 4 with errors of commission
and omission. Error of commission occurs when pixels associated
with other classes are incorrectly identified as current class; error
of omission occurs whenever SVM simply does not recognize pixels
that should have been identified as a particular class. The confusion
matrix shows that among 3572 canopy pixels in Fig. 10c, 3182 pixels
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Fig. 8. Boxplots for REP positions of different classes from both the field and indoor measurements: (a) the field measurement, and (b) the indoor measurement.

Fig. 9. Scatter plots in PC space (2007 subset image): (a) six classes in 2D PC space, and (b) three vegetation classes in 3D PC space.
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were classified correctly as tree canopy; 314, 75, and 1 pixels
were incorrectly classified as shadow, grass, and soil, respectively.
The error of omission for tree class was 10.9%. However, most of
misclassification happened between tree and shadow, which is
obviously caused by the unclear boundary between those two clas-
ses. Since this study was only concentrated on the bright canopy
area, this ambiguous area actually did not affect much on the final
result. By ignoring this uncertain area, a modified error of omission
and commission for tree class can be re-calculated by Eq. (1) and
(2), which were highly improved. The classification result for tree
canopy was then used to build a mask for further HLB detection.

Modified error of omission for tree class :
75þ 1
3572

� 100%

¼ 2:1% ð1Þ

Modified error of commission for tree class :
242þ 91þ 6

3890
� 100% ¼ 8:7% ð2Þ

2.4.3. Image classification
The 2010 CREC images were not chosen for classification analy-

sis due to an obvious uncorrectable distortion observed in the HS
image. In the 2007 HS image, five 100 by 100 pixels subset images

were randomly chosen to implement classification methods. Two
of them were used as a training set, and the remaining three
formed a validation set. Eighty-two and 94 HLB infected trees were
found in the training and validation sets, respectively; the rest of
the trees were considered healthy. HLB and healthy pixels from
the training set were collected as libraries. In the 2010 SG images,
most of the ground truth was concentrated in a small area shown
in Fig. 11a. This area had 200 by 200 pixels in MS image and 100 by
100 pixels in HS image. The right half area (200 by 100 for MS im-
age, 100 by 50 for HS image) was used as a training set, and the left
half as a validation set. Pixels from S_PCR_P (39 samples) in the
training area were collected as an HLB library (marked with red
crosshairs in Fig. 11a), and pixels from HEA_PCR_N (14 samples)
in the training area (marked with white crosshairs in Fig. 11a)
formed a healthy library.

Different classification methods were carried out through both
training and validation sets by using the library built from the
training area. The classification result which best fit the ground
truth in the training set was then used to compare with the ground
truth in the validation set to calculate detection accuracy. In the
2010 SG image, both S_PCR_P and NS_PCR_P classes were consid-
ered as HLB infected trees (41 in the training area and 42 in the val-
idation area) when calculating the detection accuracy.

A visualized plot of HLB and healthy training pixels in MS band
space is shown in Fig. 11b. An overlap can be spotted between HLB
pixels (red crosshairs) and healthy pixels (green ‘x’ marks).

To develop a better algorithm for HLB detection, the following
methods were compared and evaluated: parallelepiped, minimum
distance (MinDist), Mahalanobis distance (MahaDist), spectral an-
gle mapping (SAM), spectral information divergence (SID), spectral
feature fitting (SFF), and mixture tuned matched filtering (MTMF).

Parallelepiped classification forms a simple decision boundary
which is an n-dimensional box or parallelepiped in image data
space to classify data. MinDist actually refers to minimum distance
to class means; it is another simple method which only calculates
the Euclidean distance between each unknown pixel vector and
the mean vector of each class. Compared to MinDist, MahaDist
classification not only calculates the Euclidean distance between
unknown pixel and the mean, but also has directional sensitivity.
It takes into account how noteworthy this distance is by calculat-
ing statistical information of each dataset, but yet fast (Richards
and Jia, 2006).

SAM is a physical-based spectral classification method that uses
an n-dimensional angle to match pixels to reference spectra. It was
developed by Boardman (Kruse et al., 1993) which determined the
similarity between two spectra by calculating the angle and treat-

Fig. 10. SVM classification accuracy evaluation (2007 subset image): (a) original subset image, (b) SVM classification result, and (c) manually defined ROIs by human vision.

Table 3
ROI colors in the classification images and their
corresponding classes.

ROI color Class

Green Tree canopy
Cyan Grass
Red, black Shadow
Blue Soil
Magenta Sand

Table 4
Confusion matrix for SVM classification result.

Class (pixel) Tree Grass Soil Sand Shadow Commission (%)

SVM_Tree 3182 242 91 6 369 18.2
SVM_Grass 75 781 19 2 23 13.2
SVM_Soil 1 62 484 42 41 23.2
SVM_Sand 0 0 15 245 0 5.8
SVM_Shadow 314 89 288 8 3631 16.1

Total 3572 1174 897 303 4064
Omission (%) 10.9 33.5 46.0 19.1 10.7
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ing them as vectors in a space with dimensionality equals to the
number of bands in use (Richards and Jia, 2006). All the four clas-
sification methods mentioned above (parallelepiped, MinDist,
MahaDist, and SAM) need to input proper threshold parameters.

SID is a stochastic spectral information measuring method. It
considers a spectrum as a random variable and measures the diver-
gence between spectra. Smaller divergence indicates higher simi-
larity (Chang, 1999; Du et al., 2004). Qin et al. (2009) found a
high accuracy of 96.2% to detect citrus canker from normal peels
and other conditions based on the hyperspectral images taken in
a laboratory condition.

Continuum removal is a newly developed method which is used
to normalize the band depth of spectra so that the depth difference
of each class can be more obvious and comparable. It mainly works
on spectral absorption range, in other words, the reflectance spec-
tra must have a concave in the range of interest (Kokaly and Clark,
1999). The absorption feature retrieved in this method was found
to have a significant correlation with leaf nitrogen content, vegeta-
tion coverage, etc. (Huang et al., 2004; Wen et al., 2008). SFF clas-
sification method is directly based on this technology. A scale
image and root mean square (RMS) image are outputted for each

class. Higher scale value and lower RMS error indicate a better
match with the library.

MNF transform was performed on all the HS images before
implementing MTMF. Every MNF band has an eigenvalue, which
rapidly decreases with band number (shown as Fig. 12). The larger
the eigenvalue is, the more abundant the information is. The first
20 MNF bands were chosen to carry out MTMF mapping method
since they had more significant eigenvalues. MTMF conducts
matched filtering (MF) on image and additionally adds an infeasi-
bility image to the results which could be used to reduce the false
positives found by MF. Pixels with a high infeasibility are likely to
be MF false positives. Parker Williams and Hunt (2002) analyzed
the coverage of leafy spurge by using MTMF method, and a high
determination coefficient of 0.79 was reached when comparing
with the ground truth.

3. Results and discussion

3.1. Ground spectral separation result by REP technologies

To separate HEA_PCR_N and S_PCR_P samples by using ground
reflectance spectra (dataset interpreted in Fig. 6), a simple method
of REP threshold could reach fairly high accuracy. Table 5 shows
the overall separation result. The indoor dataset (about 95%)
reached higher accuracy than outdoor dataset (about 90%), because
indoor measurement had more ideal environment and larger num-
ber of samples. Four-point linear extrapolation technique yielded
better performance than three-point Lagrangian interpolation.
Fig. 13a shows the REP result by four-point linear extrapolation
from the 2010 SG indoor measurement. This result shows that
REP technique is a promising classification method, at least for
ground measurement.

Same techniques were then applied to the 2010 SG HS image,
from where, 52 HEA_PCR_N pixels and 109 S_PCR_P pixels were
chosen to calculate their REP by Lagrangian interpolation and lin-
ear extrapolation, respectively. But neither of those methods pro-
duced good result as shown in Fig. 13b which contains the result
calculated by linear extrapolation, and little difference could be
found. This is probably caused by the low spatial resolution of

Fig. 11. Subset image for classification and n-D Visualizer for the HLB and healthy libraries (from 2010 SG MS image): (a) true color image of the subset area; red crosshairs
infer to HLB infected tree samples, white crosshairs infer to healthy tree samples; the right half for training and left half for validation; (b) n-D Visualizer for HLB (red plus)
and healthy (green cross) canopy libraries; Axes 1–4 represent the blue (480 nm), green (550 nm), red (650 nm), and NIR (830 nm) band in the MS image, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Eigenvalues for each band after MNF transform (from 2010 SG HS subset
image).
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the image which blurred out the characteristic found in ground
measurement.

3.2. Image classification result

Fig. 14a1 shows part of the result conducted with MinDist
method from the 2010 HS image. The green areas indicate healthy
tree canopies, and the red rectangles are the HLB detection results.

T-
he
c-

rosshairs show the infected trees which were confirmed by PCR
test. Fig. 14b shows part of the classification result by MinDist from
the 2010 MS image.

Ground measured reflectance for HLB and healthy canopies
were used as libraries in SID and SFF spectral mapping methods.
Fig. 15a shows the mean spectral library of HLB and healthy classes
from the ground truth. The classification result by SID from the
2010 HS subset image is shown in Fig. 15b.

Fig. 16 shows the classification result by SFF method. A scatter
plot is presented in Fig. 16a, in which, x-axis represents the values
from the scale image and y-axis represents the values from the

Table 5
Separation results between HEA_PCR_N and S_PCR_P classes by using simple REP thresholds, where ‘‘LI’’ means Lagrangian interpolation, ‘‘LE’’ means linear extrapolation.

Experiment REP method Threshold (nm) Accuracy

Number of samples Pct. (%)

2010 SG field measurement (total sample number: 24) Three-point LI 719.8 21 87.5
Four-point LE 720.0 22 91.7

2010 SG indoor measurement (total sample number: 136) Three-point LI 718.2 129 94.5
Four-point LE 716.5 130 95.6
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Fig. 13. REP calculation results in the 2010 SG experiment: (a) REP calculated by four-point linear extrapolation from the indoor measurement, (b) REP calculated by four-
point linear extrapolation from the HS image.

Fig. 14. MinDist and MahaDist classification results: (a) MinDist result from the 2010 HS image, and (b) MahaDist result from the 2010 MS image (validation set).

1 For interpretation of color in Figs. 3, 8, 14, 16, and 18, the reader is referred to the
web version of this article.
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RMS image. Higher scale and lower RMS value indicates a better
match to the library. The lower right corner in Fig. 16a was selected
as infected pixels which are also marked out (red rectangles) in
Fig. 16b.

As shown in Fig. 17, a similar scatter plot was generated when
MTMF was implemented. x-axis is the MF score, and y-axis is the
infeasibility. Every pixel was plotted in the scatter plot according
to their MF scores and infeasibility values which were calculated
by MTMF mapping method. Pixels which had high MF scores and
low infeasibility values (mapping in the lower-right corner in the

scatter plot) were selected out as the infected pixels. Fig. 17b
shows the corresponding pixels marked in Fig. 17a.

3.3. Classification result comparison

Since all the ground truth coordinates could only reach tree-le-
vel positioning accuracy, average values of neighboring pixels were
adopted to build the HLB and healthy libraries, therefore, only tree-
based accuracy rather than pixel-based accuracy could be calcu-
lated in the classification results. Even though the whole SG grove
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Fig. 15. SID classification result from the 2010 HS image: (a) imported library from the ground measured reflectance, and (b) SID classification result.
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were roughly scouted, and infected trees were recorded by grow-
ers, but no PCR tests were conducted to ensure their infection sta-
tus. Also the positioning errors were too notable to ignore. So it
was difficult to count the overall detection accuracy, and only
detection accuracy about the PCR confirmed trees could be calcu-
lated. Table 6 includes all the tree-based classification accuracy

for both training and validation sets in the images taken at the
SG grove.

The classification results for the 2007 HS image are not good.
The highest correct identification rates are 75.6% for the training
set, and 53.2% for the validation set. The main reasons for these
low accuracies are: (a) HLB and healthy libraries built from the
ground truth in the 2007 experiment were not accurate due to
the high positioning error; (b) the 2007 HS image had five subset
images from different areas, radiometric differences between each
subset (may be caused by the geographic changes, atmospheric
particulate variation, etc.) also had negative influence on the clas-
sification results.

The 2010 images yielded much better results than the 2007 im-
age. SFF showed very good accuracy of 95.1% in the training set and
90.2% in the validation set in the 2010 HS image, but it did not
work well in the MS image, implying that SFF was not a good idea
for this four-band MS image. More (but not too many) bands would
be needed for a better result. SID yielded abnormal result in the
2010 MS image (detection accuracy in the validation set was much
higher than that in the training set), which indicated unstable per-
formance in this application. SAM performed very well in the train-
ing set, but its accuracy decreased significantly in the validation
set. Simpler classification methods like MinDist and MahaDist
showed more stable performance in the 2010 images, as they
had more balanced accuracies between the training and the valida-
tion sets.

In order to better evaluate each classification method, infection
density maps were also generated in ArcGIS (version 9.0, Esri, Red-
lands, CA, USA) from the ground scouting result (Fig. 18a) and clas-
sification results by different algorithms (Fig. 18b–f) in the 2010 HS
image. Four degrees of infection were defined according to the
infection density: low, medium, high, and severe.

From the density distribution maps, an important phenomenon
was noticed: the infection areas and severity produced by classifi-
cation results are smaller and less than the map generated from
the ground scouting result. It meant all the classification methods
underestimated the infection severity. The reason was that the

Table 6
Classification results of different detection methods implemented. Tree based
accuracies were calculated for the training (T) and validation (V) sets. Total numbers
of PCR confirmed infected tree were included in the parentheses in the ‘‘Image’’
column.

Image Method Correctly identified

Training set (T) Validation set
(V)

No. of
trees

Pct.
(%)

No. of
trees

Pct.
(%)

2007 SG HS image
(number of HLB
infected trees: T, 82;
V, 94)

Parallelepiped 44 53.7 27 28.7
MinDist 37 45.1 39 41.5
MahaDist 82 100 30 31.9
SAM 50 61.0 43 45.7
SID 33 40.2 28 29.8
MTMF 62 75.6 50 53.2
SFF 49 59.8 32 34.0

2010 SG HS image
(number of HLB
infected trees: T, 41;
V, 42)

Parallelepiped 30 73.2 18 42.9
MinDist 34 82.9 27 64.3
MahaDist 31 75.6 32 76.2
SAM 40 97.6 23 54.8
SID 37 90.2 25 59.5
MTMF 38 92.7 24 57.1
SFF 39 95.1 37 90.2

2010 SG MS image
(number of HLB
infected trees: T, 41;
V, 42)

Parallelepiped 39 95.1 25 59.5
MinDist 37 90.2 28 66.7
MahaDist 38 92.7 26 61.9
SAM 39 95.1 26 61.9
SID 31 75.6 40 95.2
MTMF 35 85.4 26 61.9

Legend:
(Trees/ ha.)

(a) Scouted infected trees (b) MinDist result (c) MahaDist result

(d) SAM result (e) SID result (f) MTMF result

V T V T V T

V T V T V T

Low: 0-70

Medium: 71-140

High: 141-210

Severe: >210

Fig. 18. Density distribution maps, in which the black dashed lines indicate the boundary of the training (T) and validation (V) sets: (a) density map generated from ground
scouting by grower; (b–f) density maps generated by different classification results in the 2010 HS image.
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classification thresholds were only determined to maximally
match the PCR confirmed ground truth which was not fully inves-
tigated for all the trees. This problem can be solved by investigat-
ing ground truth comprehensively in the training area.

Putting aside the difference of infection severity, MahaDist
yielded the best match with the trend of the ground scouted truth
map. Since MinDist measures the Euclidean distance from library
mean, and SAM is essentially the Euclidean distance (Du et al.,
2004) when the spectral angle is small (which is exactly the case
in this study because this HLB disease detection is actually based
on the same kind of canopy), they produced very similar results
with each other. SID and MTMF relatively overestimated the infec-
tion situation in the training set and underestimated it in the val-
idation set, indicating an over-fitting problem. But no matter
which method was used, the most severely infected areas (red
areas in Fig. 18a) were all pointed out, showing a great potential
to support citrus grove management. This also indicated that the
more severe the disease is, the easier it can be identified. In one
word, airborne image could be used to assist citrus grove manage-
ment since it was capable of detecting the HLB disease with obvi-
ous symptom and infection area. Fast and semi-automatic
detection procedure could be developed as long as the ground
truth in the training area could be investigated as the input.
Thresholds in the classification methods could be manually
decided. More comprehensive and precise ground truth investiga-
tion would produce higher accuracy.

From both the quantified accuracy results and the density maps,
the relatively simpler methods – MinDist and MahaDist showed
more stable and balanced performance than the rest, thus they
were highly recommended in a future study.

Some problems were encountered during this research, espe-
cially in the field experiments. To get better results, the following
improvements or suggestions needed to be taken into
consideration:

(1) Low classification accuracy and high false positive were
highly related with large positioning error of the ground
truth. More precise ground truthing must be conducted.
For example, specific infected canopy locations and areas
other than the center coordinates of infected trees should
be recorded to exactly pinpoint the research targets. Reliable
imaging system was another critical concern to ensure high
quality images.

(2) Except MTMF, all other classification or spectral mapping
methods were carried out in the original band space, how-
ever other data spaces such as MNF space, PC space, etc.
should be further considered for better classification results.

4. Conclusions

The MS and HS airborne images of citrus groves were acquired
to detect HLB infected trees. Ground truthing including ground
reflectance measurement, tree infection status confirmation, and
GPS coordinates recording was implemented to analyze the spec-
tral features and build proper libraries for HLB infected and healthy
canopies. The following are major findings:

(1) Spectral reflectance was analyzed. Ideally, the healthy can-
opy had higher reflectance in the visible range, and lower
in the NIR range than the infected canopy. But the relation-
ship in the NIR range was easily affected by measuring con-
dition or environment.

(2) REP was comparably less sensitive to the environment than
the reflectance in the NIR range. Separation accuracy of more
than 90% was reached when simple threshold method was

implemented within ground spectral datasets, regardless of
field or indoor measurement; but still did not work well
with HS images due to its low spatial resolution.

(3) SVM provided a fast, easy and adoptable way to build mask
for tree canopy to block out background pixels for further
imaging classification.

(4) Several classification and spectral mapping methods were
conducted to evaluate their applicability for HLB detection.
High positioning error of the ground truth in the 2007 HS
image led the validation accuracy to less than 50% for most
of the classification methods. However, with better ground
truthing data, the 2010 SG images reached higher accuracies
ranging from 43% to 95%. Simpler classification methods,
MinDist and MahaDist, showed more stable and balanced
performance between the training and validation sets, thus
those two methods were highly recommended in a future
study.

(5) Most of the methods were able to detect the severely
infected areas in the density maps, and their similar infec-
tion trend with that of scouted map could provide a promis-
ing way to assist HLB disease management. Using the
ground truthing in the training area as the prior knowledge,
procedures could be developed for rapid detection of the
HLB disease.
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